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Executive Summary

The purpose of this Master of Engineering project is to design and develop tools from the
ground up in C to automatically generate transistor-level layout in MAGIC from
production rules in CAST. The main focus is the automated design of complete bit-level
layout through stack generation and wire routing algorithms. The result is TLG: The

transistor-level generator.

To generate transistor-level layout TLG receives desired nfet and pfet structures, as well
as definitions from an input TLG file. TLG analyzes the structures and connects as many
of the transistors as it can with direct source and drain connections, generating transistor
stacks. Additional considerations are made for connections that are internal nodes, output
nodes, or power rails. From there TLG analyzes the stack structure and attempts to wire
the remaining source, drain, and gate connections. The Maze Routing algorithm is
implemented to generate wires of minimal length while observing all appropriate design
rules. Wiring begins on the same metal layer as the desired connection, but moves to
alternate metal layers if the path is deemed more suitable. The end result is output

directly to a MAGIC file and is able to be immediately read and modified as desired.

Overall the project has been a success. Stacks are generated correctly, the output format
is compliant with MAGIC, and most connections encountered can be wired. Substrate
contacts, diffusion contacts, and labels are all intact as desired. TLG uses a number of
special purpose data structures to compactly store and analyze the input transistor data,
and it uses a modified version of the Maze Routing algorithm to effectively route wires.
TLG is not without its limitations, however. Once the stack structure is generated it is
permanent, which can prevent efficient wiring of certain connections later on.
Additionally, a placed wire may be a minimal path to its destination, but it may prove to
disrupt many subsequent wires. However, any shortcomings of TLG are far outweighed
by the flexibility of the platform developed, the uniqueness of the algorithms used, and

the ability for countless other features to be added easily in future versions of TLG.
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1. Introduction

Transistor-level layout is an essential step in the design of any microprocessor. While
truly an art form at its zenith, manual transistor layout is usually considered to be a
monotonous, tedious, and ultimately incredibly time-consuming exercise. Like so many
innovations of the past, transistor-level layout is a perfect candidate for computer

automation. Enter TLG: the Transistor-Level Generator.

The prevailing goal of TLG is to alleviate, if not completely eliminate the pain of manual
transistor layout. Nestled softly in between the production rule stage and datapath design
stage of microprocessor development, TLG receives input files representing the cell level
production rules of the design and any other specific definitions. TLG generates
intermediate representations of the desired transistor structures to establish
interconnections, generate transistor stacks, and provide shortest-path wiring between
source, drain, and gate connections. Ultimately, TLG generates an output file that
contains the complete cell layout according to the specified production rules and design

rules.

It is hoped that TLG will save students and other chip designers time that can be better
allocated elsewhere to other endeavors, such as making their processors actually work.
TLG reduces the necessity to spend long hours drawing and redrawing transistors, wires,
contacts, and the like, and instead merely requires a few input parameters specified at
generation time, or in the input files themselves. The ultimate purpose for TLG lies in
the possibility of breaking down the functional units of a microprocessor’s production
rules, running them on multiple instances of TLG concurrently, and arriving at a nearly

complete transistor-level layout of the microprocessor.

2. Design Specifications

TLG was developed partially under the premise that it would ultimately be used in part
by students at Cornell University required to layout their VLSI projects for courses such

as ECE 474: Digital VLSI Design and ECE 574: Advanced Digital VLSI Design. As
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such, TLG was intended to be compatible with the existing tools those types of courses
utilize, namely CAST: a production rule editor [1], and MAGIC: a VLSI layout editor
[2]. Thus, TLG was to be developed from scratch in C to automatically generate MAGIC
compatible output from CAST compatible input. TLG’s place in a student’s
microprocessor design cycle was then determined to potentially be between the

production rule stage and datapath design stage as shown in Figure 1 below.

Production
Rules

TLG Datapath

Design

Figure 1: TLG Position in a Typical Design Cycle

Existing tools within MAGIC provided the preliminary ability to generate nfet and pfet
stacks of transistors of specified sizes from production rules through direct source and
drain connections. Thus, developing TLG to this level was both an obvious initial goal,
and an evolutionary point that clearly needed to be exceeded. It was first established that
additional considerations should be made for stack connections that are internal nodes,
output nodes, or power rails. The next main objective was to analyze the stack structure
and wire the remaining source, drain, and gate regions of the resulting stacks together so
they could be directly simulated in IRSIM or ASPICE and indicate more precisely the
ultimate behavior of the circuit. It was clear that these generated wires needed to be
relatively optimal, and observe all the necessary design rules, so a careful selection of
routing algorithms would be needed. From this point, it was clear that the wiring
procedure should also be extended over multiple metal layers to ensure more flexibility
and hopefully more optimal wiring. It was also determined that key parameters should be
provided into all of these processes to decide which metal layers should be used, in what

orientations, and with what precedence.
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The project had obvious extensions in nearly every direction, including arraying single
cell layout blocks, wiring existing MAGIC layout files, receiving input directly from
technology files, and more advanced optimization techniques. It was determined that
these features, while both useful and relevant, would not make it into the current version
of TLG. However, many of these additional features have been anticipated for future
versions, and aspects of TLG have been designed to facilitate a smooth implementation
of these features. A more detailed discussion of some of these issues can be found in the

Related Work section near the conclusion of this report.

With a firm grasp of the project time constraints, the development of the current version
of TLG was focused exclusively on single cell level layout. From there a set of
specifications and project milestones was created. The following bullets in Table 1

summarize the resulting set of goals established:

Table 1: TLG Goals and Specifications

Basic Operation

Read t1g files as input for production rules

Output files in mag (MAGIC) format

Generate transistors with labels

Parse specified lengths and widths, and partial inputs
Parse key specifications as definitions from input files

Stack Generation

Merge series and parallel transistors together
Generate transistor connection graph

Insert contacts into required sections
Recognize and generate loop stacks
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Wire Routing

Break stack structure apart into grid

Connect source to destination using a search queue
Retrace minimal path wire and add to .mag structure
Route using wire spacing considerations

Source, drain, and gate connections

Use additional metals for multilayer routing

Provide vias and contacts between layers

Constrain metal layers and allow precedence
Maintain design rule specifications

3. TLG Operation

Overview

In its most primitive form TLG takes in an input file, performs operations on it, and
produces an output file. The input t1g file represents the production rules from CAST
and parameters to modify the analyses. The operations include parsing the input file,
generating intermediate representations to perform transistor stacking, wiring routines
and optimizations, outputting intermediate grid and wire files, and formatting the results
to be output while printing them to the screen if desired. The resulting mag file
represents the corresponding transistor layout and is directly readable with MAGIC. A
basic block diagram of the data flow of TLG is seen in Figure 2 below. A summary of

all the global variables and procedures used in TLG can be found in Appendix A.
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Figure 2: TLG Basic Data Flow

In the beginning of TLG’s procedure, after all data structures are initialized, command
line parameters are checked to setup global variables. The procedure makehead () is
called to write the beginning of the output mag file that will be built throughout the
execution of TLG. For a discussion of this format see the MAG File Format section that
follows. Next getmeat () is called which parses the input t1g file identifying nfet and
pfet transistors and their optional characteristics, including oxide length and width, and
source, drain, and gate labels. More about this file format is explored in the TLG File
Format section. According to these identifications getmeat () creates trans structures:
general-purpose structures that represent all necessary aspects of a transistor. These
structures are explored in The trans Structure section that follows this discussion. In
the process of creating these structures getmeat () adds them to the statically defined
fets[] array. Immediately after this getmeat () calls locate() to determine if the

newly created transistor should be connected to an existing one, namely if its source,
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drain, or gate label matches a previously defined label. If there is a match, and the
transistors are of the same type (n-type or p-type), a pointer in the previous transistor is
set to the new transistor, indicating a parent-child relationship between them. This

process is continued over all transistors.

At this point in the execution of TLG the stack procedure is run. This stage will be
discussed in greater detail in the Stack Generation section, but generally it involves
walking through the fets[] array to find possible stack heads, then walking through the
children of the head to build the rest of the stack. When this process is complete,
makestack () 18 run which generates data for layout array structures based on the
generated stacks, creates diffusion contacts for needed areas, well plugs if desired, and

flags and queues connection points that need wires.

The next step for TLG is to run the wiring procedures. These too will be discussed in
great detail in the Wire Routing section but in general involve filling a 2D or 3D grid
with the current stack information via the procedure printgrid (), and fulfilling all the
wiring requests one by one using routegrid(). After each new wire is created a
procedure makewire () is called to add its layout data to the existing set. The final phase
of TLG’s execution is calling the procedure makemeat () which dumps all of the layout

data collected to the mag file, along with maketail () which adds the epilogue and closes

the file.

TLG File Format

The initial concept for TLG involved reading the desired production rules directly from a
CAST file. It was decided, however, that the main focus of the project was on the
automated layout and optimizations, and creating a good production rule parser was a
formidable undertaking within itself. Removing this requirement allowed for greatly
increased flexibility in the input format of the netlist, and so tlg, a new and

straightforward file format was created.
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The t1g file format is line based, insofar as each line indicates one completely variable
definition. If the line begins with the identifier “nfet”, “pfet”, or “defs” the entire line
is interpreted as an nfet transistor, pfet transistor, or definition respectively. Additionally,
the existence of a pipe symbol “|” anywhere in the line taints it, effectively, and causes
the entire line to become a comment. TLG currently interprets only the first 100
characters of a line for no good reason other than to make the length fixed, and this value

can be increased or decreased as desired.

If an nfet or pfet are specified in a t1g file the remaining line is devoted to the transistors
characteristics, all of which are optional and do not need to be specified in any particular
order. The characteristics include oxide length and width, and source, drain, and gate
labels. If transistor length and width are omitted default values are assumed. Labels are
assumed to be inherently unique, and non-unique labels are assumed to be intentionally
connected. Thus, unique identifiers are created for the unlabeled connections, and they

‘C"’

are assumed to be disconnected from all other nodes. Labels ending in are assumed
to be power rails, while labels ending in “#” are assumed to be internal nodes (nodes that
require no label or connection, but exist as internal representations of connections).
Nodes of these two special cases are handled differently by the stack generation
procedure. Transistor characteristics are signified by a single letter followed by a colon.
The identifiers “l:”, “w:”, “s:”, “d:’, and “g:”, represent the transistor’s length, width,

source, drain, and gate, respectively. To define a simple CMOS inverter, as in Figure 3a,

for example, the t1g file shown in Figure 3b could be written.
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ded!

b
:’7X
a L=3
W=6 . . .
| inv.tlg - a simple inverter |
nfet 1:3 w:6 s:GND! g:a d:X
GND! pfet d:X g:a s:vdd!
Figure 3a: A CMOS Inverter Figure 3b: Sample t1g File for an Inverter

Note that in this example the length and width of the nfet are specified to be 3 lambda
and 6 lambda respectively. The length and width of the pfet are unspecified and will be

set to the current default values of 2 and 5 respectively.

If “defs” is specified in the beginning of a line in a t1g file the remainder of the line is
used to setup initial declarations and design rules. These definitions include n-difffusion
contact width, minimum n-diffusion to p-diffusion width, metal 1 wire width, etc. If an
incomplete set of definitions is specified, or no definitions are specified the default values
will be assumed. A listing of currently available definitions, as well as their default

values can be found in Appendix B.

Clearly other nuances can be added to the t1g format to better define the information
being transferred from the production rule phase, they are just not handled by the current

version of TLG.

MAG File Format

The magic format is relatively straightforward to generate, and as such a complete

description is not included here. Rather, this section focuses on the techniques used by
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TLG to output compliant files. For full documentation of the MAG format please see
“Magic — Format of .mag Files Read/Written by Magic” [3] in the References section.

In general a mag file has three main sections: the header, body, and footer. The header is
comprised of the identifier “magic”, signifying it is a Magic file, an optional specifier of
the technology being used, and an optional timestamp indicating when the file was last
edited. For single cell layout, the body of the file contains mask rectangles divided by
layer, and labels. Finally, the footer contains a line signifying the end of the file. A
sample magic file representing a single nfet transistor with labels is shown in Figure 4

below.

magic
tech scmos
timestamp 1052873976

<< ntransistor >>

rect 4 6 8 8

<< ndiffusion >>

rect 4 8 8 11

rect 4 3 8 6

<< polysilicon >>

rect 2 6 4 8

rect 8 6 10 8

<< labels >>

rlabel polysilicon 3 7 3 7 3 a
rlabel ndiffusion 5 4 5 4 1 GND!
rlabel ndiffusion 5 10 5 10 5 X

<< end >>

Figure 4a: Transistor Layout in Magic  Figure 4b: Sample mag File for a Transistor

Each layer of the body of the mag file is signified by “<<” and “>>" symbols. These
layers directly correspond to their physical equivalents: the n-type transistor oxide
(“ntransistor”), n-type diffusion (“ndiffusion™), etc. A list of the available layers in the
mag file is included in Appendix C. The mag structure uses rectangles to represent
patches of particular material layers, and indicates the absolute position of the rectangles
with lambda coordinates. The rectangle is specified by “rect” and includes four fields to
define the lower left corner (xbot, ybot) and upper right corner (xtop, ytop) of its position

in lambdas from the origin. The format of a rectangle is:
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rect xbot ybot xtop ytop [3]

Similarly labels are defined with rectangles but have the added information of the layer
the label corresponds to, the position of the text with respect to the label, and the text of

the label. The label is specified by the identifier “rlabel”, and the format is:
rlabel /ayer xbot ybot xtop ytop position text [3]

TLG calls the procedures makehead() and maketail() to generate the necessary
information for the header and footer of the mag file. To represent rectangles a rect
structure was created with four position fields. To represent labels a 1abel structure was
created with the fields described above. These structures are summarized in Table 2a

and Table 2b below.

Table 2a: The rect Structure

Field | Type | Description
xbot int X coordinate, bottom
ybot int Y coordinate, bottom
xtop int X coordinate, top
ytop int Y coordinate, top

Table 2b: The 1abel Structure

Field | Type | Description
layer char * Layer name
r rect Position rectangle
pos int Text position
name char * Label text

The rect structure is used throughout TLG to store layout information in arrays. In
general, a static array is allocated for each type of layer, along with a counter indicating
how many elements have been placed in the array. When a rect is added to an array
during stack generation or wire routing, the counter is incremented and the parameters of
the rect are defined. After all generation routines are complete the procedure

makemeat () 18 called which goes through each layer array and writes the layer header
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and rect information to the mag file. Labels are handled similarly, but are only

generated during the stack generation phase.

The trans Structure

As mentioned before, the trans structure represents all necessary aspects of a single
transistor. The trans structure follows directly from the line inputs from the t1g file, as
one would imagine since they are so closely correlated. Additionally, the structure has
been augmented with pointers and counters to represent the hierarchical information
dictated by the interconnections between transistors. The trans structure fields are
summarized in Table 3 below. Note that each of the three types of connections (source,

drain, and gate) have their own set of pointers and counters.

Table 3: The trans Structure

Field Type Description
1 int Oxide length
W int Oxide width
s char[] Source name
sleft trans * Source pointer, left
sright trans * Source pointer, right
sout int Source connect counter
d charf[] Drain name
dleft trans * Drain pointer, left
dright trans * Drain pointer, right
dout int Drain connect counter
g char([] Gate name
gleft trans * Gate pointer, left
gright trans * Gate pointer, right
gout int Gate connect counter
color int Color (used vs. unused)
type char 0: n-type, 1: p-type

A static number of trans are allocated in the fets[] array with a counter representing
how many transistors are being used. When the input t1g file is read using getmeat ()
the counter is incremented and new trans structures are created. At this point the 1, w,
s, d, g, and type parameters are known or set to be the default values. The parameter

color, used mainly for stack generation, is set to zero. The procedure 1ocate () is then
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called to compare the source, drain, and gate names to any previously defined transistors
in order to build a connection graph (CG) between them. If any transistor with a source,
gate, or drain of the same name exists, the two transistors will ultimately need to be
connected together, and the counter (sout, dout, or gout) of both transistors are updated to
reflect the connection. If the dout of a transistor is 3, for example, it indicates that there
are two additional connection points that share the same name as the transistor’s drain
and will need to be connected in the layout. Connections between transistors of different
types will need to occur through wires (since the n-diffusion and p-diffusion regions are
not allowed to be close to each other), but connections between transistors of the same
type may be able to occur directly by stacking them together. Thus, if 1ocate () detects
a match between transistors of the same type, the appropriate xright pointer in the found
transistor is set to point to the new transistor, while the appropriate xleft pointer in the
new transistor is set to point back to the older one. This pointer assignment creates a
doubly linked list of transistors according to connection name, with left pointers always
pointing left from newer transistors to older ones, and right pointers always pointing right
from older pointers to newer ones. A diagram showing a possible pointer configuration

for a t1g file with three nfet transistors is shown below in Figure 5.

| threetrans.tlg - 3 fets |
nfet s:GND! d:Y# g:c

nfet s:Y# d:X g:b

nfet s:Y# d:X g:a

GND! Y# o | Q e Y#
v# X | ey Ae| X
c b a

Figure S: Pointer Connections for Three Nfets

While having a doubly linked list makes the transistor structure more complicated,

having pointers in both directions proves to be essential because it allows either transistor
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to be immediately reachable from the other one. This quality is especially useful during

stack generation.

4. Stack Generation

While wires are required to connect between transistors of different diffusion types,
transistors that are both n-type or p-type and share a connection point can be directly
connected through stacking. When wiring the three transistor example initiated in Figure
5, instead of just wiring them directly as shown in Figure 6a below, the sharing of the Y#
and X connections can be exploited to stack the transistors on top of each other as shown

in Figure 6b.

Figure 6a: Wiring of Three Nfets Figure 6b: Stacking of Three Nfets

The splitting apart of Y# requires an additional wire, but the resulting circuit is more
compact, and is much less complicated to generate automatically. The motivation of the

stack generation phase of TLG is to detect these scenarios and exploit them, if possible.
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Connection Graphs

The stack generation phase of TLG takes the fets[] array of interlinked trans
structures and interprets them as connection graphs to determine how to generate stacks.
Conceptually connection graphs depict a transistor as an edge, and a connection between
a source and source, drain and drain, source and drain, or drain and source as a named
point. Since gate connections are not considered during stacking, they only appear as
names on the edges of the transistors. More advanced stacking techniques might consider
gate connections to shift the position of stacks around to better facilitate gate wiring, but
this feature has not been focused on as of yet. For a given circuit there may be more than
one connection graph, if the circuit has multiple sets of completely independent
transistors. However, in most cases only one connection graph will exist because the
power rails connect all the transistors. An example connection graph for the three
transistor example above is shown in Figure 7 below. More complicated graphs can be
generated depending on the input, but they still conform to the guidelines described

earlier.

GND! Y#

b

Figure 7: Three Nfet Connection Graph

The left and right pointers of the TLG trans structure are used to determine how many
edges should connect to each point, while the connect counters keep track of how many
edges are connected. These details become important during the stack walking phase, as

described in the following discussion.

Stack Walking

Once the connection graph for a given transistor topology is generated a relatively
systematic approach dictates how to begin generating stacks. A stack can be generated

from a connection graph by picking a starting node and walking from point to point along
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unique edges until there are no more edges to move. A point can be visited multiple
times, but edges can only be visited once. If there are remaining points in the connection

graph that have not been reached yet, the process is repeated.

A stack will logically need to have a beginning and an end, namely a head transistor and
a tail transistor. To determine an appropriate starting point the TLG procedure
printstack () is called which searches through the fets[] array to find a potential head.
If a node in the connection graph has an odd number of connections (namely if its sout or
dout is odd) it means it will have to be a starting point or end point of a stack. When
walking through the control graph the node will essentially become a “dead end” after the
other edges are removed. These types of nodes become good candidates for being

selected as the head of a stack.

In general it is more desirable for a power rail (i.e. GND! or Vdd!) to be made the head or
tail of a stack because they are shared over the entire chip and thus have more external
connections. If a power rail is not used another type node will need to be split to make
the head. In this instance it is more desirable for internal nodes to become the head
(instead of output nodes) to reduce the output capacitance that results from adding wires
to connect the split node back together. Maintaining these preferences for head selection

can be enabled or disabled in TLG as desired.

Once a head node is selected using printstack () the procedure stackwalk () is used to
build the rest of the stack. The procedure follows the pointers of that particular trans,
effectively following the edges of the connection graph. As a transistor is visited, its
color is changed from 0 to 1 indicating it has been removed from the graph and should no
longer be considered. When a transistor is visited, it is also spun into a new structure:

strans, a stack transistor. The strans structure is summarized in Table 4 below.
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Table 4: The strans Structure

Field | Type | Description
t trans * The transistor itself
color int Transistor orientation
left strans * Stack pointer, left
right strans * Stack pointer, right
New strans structures are stored in stacks[], a statically allocated array. The

stacks[] array increases the storage requirement of TLG, but it is beneficial because it
is a simpler representation of the stack structure than adding more trans fields. The
strans structure contains the transistor itself, as well as a pointer in each direction. The
pointers maintain the stack as a doubly linked list. The head strans thus has a left
pointer set to NULL and the tail has a right pointer set to NULL. Lastly, a color field has
been added to additionally define the orientation of the transistor in the stack, namely 0 if
the source side is pointing down or 1 if the drain side is pointing down. This information
is important because switching the orientation effects the way the source and drain
connections are made. If stackwalk () reaches a transistor it cannot exit from it is made
a tail node of the stack, and the process is repeated on a new head until there are no
transistors remaining in the graph. In addition to generating strans structures,

printstack () optionally prints the stack to the screen in a suitable representation.

One of the remaining subtleties of this process is the detection of loop stacks; namely
transistors that are connected in a ring and thus do not have any nodes with an odd
number of connections. TLG detects these cases after detecting all the previous ones by
picking a head from the remaining nodes (regardless of sout or dout) according to the
node preference scheme described earlier. One additional subtlety is the process of
removing a node from the connection graph. Since nodes of the same name are
connected by a doubly linked list structure, removing a node would require retying
together the pointers of the linked list. While this is certainly true, it does not tell the
whole story because additional considerations need to be made over which type of
connection is being made. Namely, if a source named Y of a transistor is connected to

another transistor, it may be connected to the source, drain, or even gate of the other
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transistor. As such, the name of each of the connections needs to be verified before the
pointers are rewritten. This unfortunately hairy task is handled entirely by the procedure
transfix () . Future versions of TLG may consider modifying the trans data structure

to simplify this procedure.

Stack Making

Once the entire connection graph has been painted and the stacks[] array has been filled
the next step is to call the TLG procedure makestack (). This procedure walks through
the stacks and generates layout for the appropriate rect arrays, including n-type
diffusion, p-type diffusion, polysilicon, n-diffusion contacts, p-diffusion contacts, n-
substrate contacts, p-substrate contacts, and metal layer 1 (ndiff[], pdiff[], polyl[],
ndc[], pdc[], and nsc[], pscl], and m1[] respectively). The procedure starts the
head at the lower left corner and generates the stack upwards. Every transistor gets its
own oxide and polysilicon “ears” as well as a patch of diffusion. If a transistor is the
head of a stack it gets an additional patch of diffusion. An annotated example of a stack

generated from three transistors is shown below in Figure 8.

tail

]
(orgx, orgy) +GND' fichd

Figure 8: Three Nfet Stack Generation
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At this point in the stack generation process the x and y coordinates of the rectangles are
systematically determined. Global variables indicate where the next stack head should
begin and from there positions are determined based on the user defined values and
parameters particular to that technology. The values considered include transistor lengths
and widths, minimum diffusion lengths, diffusion contact heights, and minimum poly
overlap widths. When a stack tail is generated, the global pointers are offset to space the
next stack from the current one. To adequately space the stacks apart, factors including
poly-poly widths and diffusion-diffusion widths are considered. Additionally, if
particular wiring schemes are selected more space may be added to better facilitate metal
routing. Lastly, if a stack of a different diffusion type is to be placed, additional space is

required between them to prevent design rule violations.

TLG is able to generate multiple types of stack positions. The default configuration
places nfet and pfet stacks down in the order they were received in the t1g file, striping
the ndiffusion and pdiffusion if necessary. This format is usually later beneficial for wire
routing because t1g files tend to be written with forward connections; that is, an output
of a particular section often connects to the input of a later section. In some instances,
though, (and depending on how the t1g file is defined) it would be more beneficial to
place the nfet stacks down first and then the pfet stacks creating two diffusion halves.
Additionally, it may prove useful to place the pfet stacks above the nfet stacks. Any of
these positioning options can yield acceptable results, and can thus be specified at TLG

runtime, as described in Appendix F.
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(¢) Horizontal Grouping

Figure 9: Stack Positioning Options

Since this phase of the process is the last chance for transistors to be placed before wiring
begins, it is an opportune time for makestack () to place necessary diffusion contacts,
labels, and well plugs. A diffusion contact needs to be placed if the transistor is the head
or tail of a stack, an output, or an internal node with more than two connections. These
situations comprise nearly all cases, except those in which two transistors appear in series
with an internal node in between them. In this case the diffusion regions can be shared.
In general, labels are placed on all connection points. Labels for internal nodes can be
optionally omitted anticipating that all unconnected nodes will be connected with a wire
later. Unfortunately, this is not always the case, so it usually safer to keep the labels
intact. Lastly, substrate contacts are optionally added to the regions that require them.
The current methodology is somewhat primitive in that it only adds well plugs where
there are power rails as the head or tail of stack. If a GND! connection exists as a head, a
square of metal 1 is placed hanging off of the diffusion contact, and a substrate plug is

placed off of the metal 1 square. This method is effective enough for relatively simple
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transistor topologies but may prove to be inadequate for more complicated designs. A

revised method should be sought for future versions of TLG.
In addition to generating the stack layout, diffusion contacts, labels, and well plugs as

described above, makestack () also identifies connection points that require wires, a

process which will be explained in the following section.

5. Wire Routing

With the transistor foundation firmly in place from the stack generation phase, the next
step is to wire all the remaining connections together. While conceptually the objective
is relatively straightforward, the implementation proves to be quite involved. In general,
the process of wire routing involves first identifying what remaining connections need
wires, then determining what these connections can be wired to, and finally trying to find

an optimal path between them.

Wire Requests

Needed wires are identified during the TLG procedure makestack(). In general if a node
has more than two connections (sout, dout, or gout = 3 or more) it will clearly need to be
wired to another node, because only two nodes can be directly connected during stacking.
To be able to detect needed wires for loop stacks this threshold is reduced to “more than
one” connection (sout, dout, or gout = 2 or more). The exceptions to this rule are the
internal nodes whose diffusion regions were merged. If the two connections were
merged successfully, and there are no other connections to that node, there is no need for
a wire. Lowering the threshold results in the occasional “false positive” of an output
connection that does not actually need a wire, but for these instances the routing
algorithm will realize there is nothing to connect the output to, and it will cancel the wire
request. Once a wire is detected, a wire structure is generated and added to the wire
request queue wires([], a static array of wire structures. The wire structure is

summarized in Table 5 below.
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Table 5: The wire Structure

Field Type Description
X int Starting X coordinate
y int Starting Y coordinate
S int Stride
name char * Node name
color int Color (used, unused, etc.)

A wire structure includes the x and y coordinates of the needed connection, a pointer to
the name of the node, and the wire color to indicate if the connection has been made (it is
initially set to zero). For simplicity, the point (X,y) corresponds to the lowest, leftmost
corner of the desired connection. Thus for source and drain connections the lower left
corner of the diffusion contact is signified, and for gate connections the lower left corner
of the leftmost poly overlap is signified. Additionally, the wire structure has an
interesting field referred to as the “stride” which corresponds to an offset in the x
direction, and is intended to indicate an alternate starting point of the wire should the
original x and y coordinates prove to be unwireable. In the case of a gate connection, the
stride corresponds to the distance necessary to hop from the left polysilicon “ear” of the
transistor to the right polysilicon ear. In the case of a source or drain connection the

stride is the distance necessary to hop to the other side of a diffusion contact.

Once the stack structure has been thoroughly checked for needed wire connections, the
next step is to figure out what they can connect to. The beginning stages of the TLG
procedure routegrid() attempt to find a suitable destination for the starting connections.
First an unused (color = 0) or partially used (color = 1) node is selected from the wire
request array wires[]. It is then checked against all other wire requests, and if there is
another connection with the same name that is completely unused routegrid () attempts
to connect them together. If the connection is a success the original node is marked as
used, and the node it was connected to is marked partially used. If the routing fails,
however, routegrid () reexamines all the requests and attempts to connect the node to a
partially used node of the same name. If this also fails, routegrid () uses the procedure
travwire () to attempt to connect the node to any part of a wire electrically connected to

a partially used node of the same name. If this final test fails, it either means there is no
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good path to connect the node, or there are no other partially used nodes, which means

the node is probably connected already.

At the conclusion of this analysis the needed wires have been identified, and their starting
and ending points have been determined. The next step is to find an appropriate path to

generate the wire, which requires a routing algorithm.

Maze Routing

To connect a source node to a destination node TLG employs a modified version of the
Maze Routing algorithm. This is a fairly common algorithm for routing wires in VLSI
microprocessors and circuit boards. In this algorithm a metal layer is represented by a
two dimensional grid. In the first phase of the algorithm the source node is expanded in
all directions, with a counter signifying the current distance from the source node. As the
“wavefront” from the source node is expanded over the grid, each move that is made is
checked to ensure it is valid according to the design rules with respect to the transistor
topology, existing wires, or other obstacles. The distance of each point that is
successfully reached is recorded. If there are obstacles in the way, they may eventually
be routed around, at the price of having a longer recorded distance. If the wavefront
reaches the destination node, the path that represents the shortest distance is retraced
backward to the source node. Finally, the extraneous information is removed from the

grid, and the wire is generated. The stages of this process are depicted in Figure 10

below.
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Figure 10: Maze Routing Algorithm
(adapted from Nestor, 2001) [4]
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The Maze Routing algorithm was chosen largely for its simplicity and its ability to work
for TLG’s particular applications, but also because it guarantees an optimal path when
routing a single wire. Note, however, that with the Maze Routing algorithm the optimal
path of one wire may cause many suboptimal paths of subsequent wires, but this was
considered out of the scope of this project. The focus of TLG was primarily generating
correct, functional layout. Optimization has always been relevant, but a secondary
priority. A possible way to combat the limitations of the Maze Routing algorithm would
be to analyze the overall wiring efficiency over the entire circuit, and re-route wires that
caused problems later on. This is a natural extension of the existing algorithm used by

TLG, and could be considered for future versions.

Routing Implementation

TLG’s implementation of the Maze Routing algorithm is a great deal more challenging
than the ideal case described above, due in large part to varying sizes of metal widths and
diffusion contacts, and various design rule considerations. To store the current status of
the transistor layout, TLG allocates a two dimensional grid of integer values called
metalgrid[] [], with one grid point representing one square lambda of layout. The grid
is sized to encompass the entire layout with an adjustable pad around the perimeter to

allow additional space for wiring. TLG also allocates an auxiliary grid called

wiregrid[][] to store the progressive wiring data, which has a one-to-one
correspondence with metalgrid[][]. A procedure called printgrid() is used to walk
through all layout arrays and write to particular points in metalgrid(] [] if that point

should contain that particular material. Each material is assigned its own bit of the total
value, so the existence of a particular material in a square lambda of layout (x,y) can be
determined by simply performing an AND operation of metalgrid[x][y] with the desired
material mask and observing the result. This encoding proved to be especially useful
while checking for valid moves against design rules. At the conclusion of printgrid ()
a .grid file is created with a hexadecimal representation of the array. A sample

intermediate output of this file is shown in Appendix D.
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At this point in the routing process, TLG calls routegrid(). As described earlier
routegrid () attempts to find a suitable connection point for a particular node by
examining the unused and partially used nodes in the wire request array wires[]. From
there it initiates the Maze Routing algorithm. The algorithm starts at point (X,y), the
position of the specified source node and moves through metalgrid(][] in hopes of
reaching the destination node. Each step of the way a procedure called routecheck () is
executed to check if a move is valid. If so, wiregrid([][] is updated with the current
distance count of the valid move using routefill (), and more moves into untouched
areas are dispatched if possible. To reduce complexity the algorithm hops through
metalgrid[][] with a step size equal to the current metal layer width. This is an
optimization in some sense because it speeds up traversal through the grid, but at the
same time it creates the added complication of, among other things, reaching destinations
who are not perfectly aligned with the metal layer’s stride. An alternate version of TLG
uses single lambda strides when stepping through the grid, however the output is not

currently reliable. This is clearly a feature that could be added to future versions of TLG.
Since the Maze Routing algorithm relies on breadth-first searching to generate optimal
paths instead of depth-first recursion, one final structure was created: the cel1l structure,

which is summarized Table 6 below.

Table 6: The cel1 Structure

Field Type Description
X int Current X coordinate
y int Current Y coordinate
tx int Target X coordinate
ty int Target Y coordinate
m int Current metal layer
tm int Target metal layer
count int Distance from source
next cell ~ Pointer to next cell
dir char Direction of motion
The cell structure represents a set of work in the wiregrid[][] to be processed. It

contains the current grid location (X,y) to be investigated, and the destination point (tx,
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ty) that is intended to be reached. It stores the current distance count from the originating
source (measured in metal hops), as well as the current direction of motion at the time of
creation. The direction field was added to the cell structure to encourage routing to
persist in a consistent direction, ensuring that wires are as straight as possible. The cell
structure also stores the current and target metal layers, an addition used for multilayer
routing which will be addressed later. Lastly, it stores a pointer to the next allocated cell.
This field allows the cells to be queued up into a linked list structure when valid moves
are discovered and dispatched in the order they are received, allowing a breadth-first

execution of the Maze Routing algorithm.

A TLG procedure called addcell() is used every time a valid move in metalgrid[][] is
found. It is used primarily as a constructor of cell structures, but also to link new cells to
existing ones. A route queue is maintained through two global variables: routequeue
which points to the head of the queue, and routetail which points, imaginably, to the
tail. After a few initial cells are added with routegrid (), signifying the starting point
for the algorithm, emptyqueue () is called to service the requests one by one. At this
point, the procedure routewire () is called to act upon the current cell information. The
procedure first checks to see if the route was found already, or if the current cell has
come close enough to reaching the final destination node. If not, it calls routecheck ()
to examine the four spaces adjoining the current cell. If a move in a particular direction
is deemed valid by routecheck (), the distance counter is incremented and a new cell is
created with addcell (), to be serviced eventually by the emptyqueue () routine. In the
fortunate event that the route was found, the coordinates where it was found and the
distance count needed to get there are recorded. At any point in this process a .wire file
can be generated from the current contents of wiregrid(][]. A sample intermediate

output of this file is shown in Appendix D.

Once a route is found, the TLG procedure retracewire () is called to travel backwards
over the optimal path. By using the final distance count, retracewire () looks for a path
with successively descending values until the original source node is reached. The

procedure looks on all sides of the current cell to see which cell should be next. As the
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procedure traverses backwards through wiregrid(] (], it fills in the wire by overwriting
the distance values with metal identification values. At the end of this process, the
procedure clearroute () is called to strip away all the non-metal information from
wiregrid[][]. The procedure makewire() 1is called to walk through the newly
generated wire and fill the appropriate layout arrays, generating rect structures that
correspond to the wire. At this point printgrid() can be called to dump the new wire

into the metalgrid([] [] array, and routing of a new wire can begin.

Route Checking

Once a cell is issued from the route queue its next possible moves need to be checked to
see if another valid move can be made, which is accomplished by the TLG
routecheck () procedure. This procedure entails, for the most part, a brute force method
of making metal width and metal spacing considerations (or polysilicon considerations).
Depending on the current material layer used for routing, a new candidate is first checked
to ensure a wire would be able to fit within the allotted space. Note that all of these
procedures make good use of the bit masking technique alluded to earlier. In the second
stage of the checking process, the space around the wire is checked to make sure it does
not interfere with surrounding oxides, diffusion contacts, other wires, or other obstacles.
This check was initially accomplished by extending the current wire an appropriate
distance up, down, left, and right, but it was discovered that this did not account for
interference on the “diagonals” of the routed wire. The checking process was updated to

reflect this change, and it is depicted in Figure 11 below.
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Figure 11: Wire Spacing Checking

The second aspect of route checking (though not explicitly in the routecheck ()
procedure) is the method used to identify if a cell is approaching its destination. As one
might imagine, if the checking procedure is implemented too aggressively a wire
approaching its target may interpret the destination as an obstacle that needs to be
avoided. In this scenario no routing would ever complete successfully. To avoid this
dilemma the concept of a destination “halo” is introduced. A destination halo
encompasses the destination contact (or polysilicon) itself, as well as any obstacles that
might be within the reach of the halo. Thus, if a cell approaching a destination
encounters an obstacle within the destination halo, the obstacle is assumed to be
electrically connected to the destination. At this point it is acceptable to connect the wire

to the obstacle instead of the destination.

Multilayer Routing

Multilayer routing is in many ways just an extension of wire routing. It is, in essence, the
same routing algorithm applied in three dimensions instead of two. However, enough

changes need to be made to the algorithm and checking routine that warrant discussion.

To make the TLG wire routing procedure work on multiple metal layers, the two-

dimensional array wiregrid[]1[] is made three-dimensional (while metalgrid[][]
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remains the same, however). The assignment of metal layers to layers of the grid can
depend on the user, but using wiregrid([0](x][y] for the polysilicon layer,
wiregrid[1][x][y] for metal layer 1, wiregrid[2](x][y] for metal 2, etc. is
generally a good idea. It is a particularly good idea to keep the wiregrid layers in the
same order as their physical counterparts because it makes moving up and down metal
layers much more intuitive. For example, one counter can simply be incremented or
decremented when changing layers. The implication of adding an extra dimension to the
array is that all accesses to and from wiregrid([] ][] are layer specific, and metal layer
information needs to be carried around in nearly all of the wire routing procedures.
Additionally, as was noted earlier, metal information is added to the ce11 structure itself

to facilitate multilayer functionality.

The TLG routing and retracing functions are generalized to accommodate transitions
between metal layers and different wire lengths. Forward routing is not as much of a
problem, because the purpose is still to get to the destination, and having misalignment in
the wiregrid while moving forward is not a huge concern. Additional statements in
routewire() allow cells to move both “in” and “out” of wiregrid(] (][] (down and up
metal layers, respectively). Backward retracing, however, becomes a major pain to get
working correctly because cell blocks are no longer guaranteed to be aligned. It is
perfectly conceivable, for example, for a wire to hop down from metal 1 to polysilicon,
travel a bit, then hop back up to metal 1. Since the metal 1 width and polysilicon widths
are generally different the metal 1 layer will no longer be aligned to metal 1 strides. This
issue is resolved by adding a “crawling” mechanism to the retracewire() procedure. On
every iteration into retracewire(), the procedure crawls as far as it can to the lower left
and upper right corners of the current cell, provided the count over all the points within
the cell remains constant. The procedure then fills in this entire region, and looks for the
next region to move to by searching around the entire perimeter of the current cell, and
the entire slice of area directly above and below the current cell. Using this method is
effective in finding a path back to the source node, but the misalignment issues can

occasionally leave extra bits of material hanging off the ends of the wires. Altogether
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these issues give further support for a change to single-lambda strides in future versions

of TLG.

Further enhancements to the TLG routecheck() procedure are made to check if moves
between material layers can be made. Not only does the space above (or below) the cell
need to be clear, but room needs to be made for a via (or polysilicon contact) to join the
two layers together. Additionally, the contact needs to be spaced away from obstacles
according to the design rules specified. This is especially annoying since polysilicon
contacts can really mess around with the generated wires, but it is necessary for
functional layout. Lastly, the final makewire () procedure is altered to generate rect

layout for all metal layers and vias that a new multilayer wire requires.

Once these modifications are made to TLG, source-to-gate and drain-to-gate wire routing
is possible. Additionally, previous connections that may have been unreachable might
find ways to become connected once other metal layers are usable. It is also possible to
specify certain metal layers as completely unusable, or define a severe penalty if they are
used by modifying the distance count with a weight when moving between material
layers. Also, it is possible to specify an orientation preference for metal layers, such as
“metal 1 goes vertically, metal 2 goes horizontally”. Not all of these options are
immediately available to the user in this version of TLG, but the infrastructure is

completely in place to make it possible.

6. Future Work

Throughout this document a number of issues have been highlighted as areas that TLG
can improve upon for future versions. It is truly hoped that other students are inspired by
this work, and get the opportunity to continue the development of this potentially
invaluable tool. Some future work on TLG could include some of the improvements or

features described in the sections below.
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Improvements

First, the trans structure, while full of many bells and whistles might be greatly
simplified if transistors we interpreted to be completely symmetric; namely if source and
drain connections were not explicitly specified in the structure. This alteration would,
among other things, greatly simplify the transfix () procedure, and in general clean up
the entire stack generation process. Second, the current method of substrate contact
generation is sufficient for small designs, but may be inadequate for larger ones. More
tests will be able to tell if this is indeed the case, and if a more robust version needs to be
implemented. Third, it is clear that using single-lambda strides while wire routing is a
needed feature, both to remove all alignment issues, and to improve the chances that a

wire can be routed within a tight space.

Additional improvements may include a volleying back and forth between the stack
generation process and the wire routing phases of TLG to optimize the generated layout.
While stacks that are currently generated do preemptively adjust their positions in
anticipation of wiring, once they are generated they are fixed. There are choices that are
made in determining where a stack should begin and end that may adversely impact the
ability of the stacks to be wired effectively, and this issue is not addressed by the current
version of TLG. Additionally, stack positions could be adjusted relative to each other to
better align gate connections or create full-cell-length busses instead of point-to-point
wires. Also, the overall wiring efficiency in general could be improved by analyzing
total wire lengths, or some other sufficient cost metric, to determine if certain wires

should be re-routed to improve the “common good” of the generated layout.

New Features

As mentioned before TLG can be expanded in nearly every direction. This is the type of
project that has no real end; it is like a painting that has no clear final brush stroke. There
are countless new features that could be added to TLG. If the arraying of single cell
layout blocks were added (with possible bit-pitch considerations) TLG would be one step

closer to being able to generate a full microprocessor. Among other alterations TLG
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would need to generate hierarchical “uses” information in the resulting mag file. If a
parser was created for inputting mag files, TLG could be adapted to wire existing
MAGIC layout files. This could be especially useful, but it would be very tricky to store
all the needed information compactly. TLG could be updated to receive input directly
from technology files. This would be an excellent feature because they would not need to

be encoded in the top of the t1g files anymore.

Additional possible features include providing support for busses, ensuring all nodes of a
cell are available on the perimeter of the cell, and allowing the user to “rubber stamp”
layouts by typing in a word or phrase and having it automatically generate the layout for
them. These are merely a few ideas that can be implemented on the existing TLG

framework. I look forward to seeing what else can be done.

7. Results and Conclusions

Overall TLG performs quite admirably in automatically generating all kinds of single-cell
transistor layout, ranging from incredibly simple designs (one or two transistors) to some
relatively tricky configurations. A collection of snapshots of layout generated by TLG in
response to particular input files is included in Appendix E. While not particularly
impressive layout, it is completely functional, free of design rule violations, and usually
has no extract warnings or wellcheck errors. Occasionally connections are deemed
inaccessible when a clever designer would probably be able to manually fit a wire there,
but these instances are forgivable. A number of unique data structures and algorithms
were created for the explicit purpose of automated transistor layout generation, and C
proved to be a perfectly acceptable language to develop in. The results for each phase of
TLG’s execution in light of the specifications and expectations of Table 1 are discussed

in the following sections.

TLG Operation

TLG operates exactly how it was intended to: it takes in an input file, performs stack

generation and wire routing operations on it, and generates a fully MAGIC compliant
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output file. While TLG does not read in CAST files directly, it reads in its own formatted
tlg files which should be easy to generate from CAST files. TLG clearly is capable of
successfully generating basic transistors with labels, and parsing transistor characteristics
input from the t1g file to alter the layout. Also, TLG is able to parse definitions from
specified lines in the t1g file to modify design rules and the general behavior of TLG’s

execution.

Stack Generation

TLG is fully capable of generating connection graphs from input transistor parameters.
From these graphs it is able to successfully generate nfet and pfet transistor stacks,
sharing source or drain connections accordingly. In generating these stacks, additional
considerations are given to nodes that are power rails or output nodes, and diffusion
contacts, labels, and substrate contacts are inserted into the layout as needed. The
substrate contact insertion is not particularly robust and could use improvement, but the
feature was never a high priority in the scope of the entire project. Lastly, loop stacks are

treated just as effectively as “normal” transistor stacks.

Wire Routing

Getting TLG to perform wire routing effectively proved to be a very challenging task, but
after much struggling it was finally accomplished. The stack structures are correctly
output to grids, needed connections are positively identified, and requests for wires are
placed into a route queue. The Maze Routing algorithm is successfully used to find an
optimal path for routing a particular wire, and design rule considerations of metal width
and spacing are incorporated to ensure correct wiring practices. Occasionally it is
obvious that a previously generated wire will become a problem for future wires but there

is no current method implemented to deal with this issue.

Once the destination is found by TLG the wire was retraced with an effort to keep the
wire as straight as possible. In the case of multilayer routing, the retraced wire would

occasionally have jagged edges as a result of cell misalignment. Placing vias and
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contacts down when switching metal layers proved to be a bit tricky, but ultimately posed
no major problem. Infrastructure to enable constraints on the metal layers is in place, but

has not been fully implemented.

The single-layer and multilayer wire routing algorithms have been tested, but by no
means have they been tested exhaustively, and it is expected that certain transistor
configurations will give TLG some significant problems. In fact, it has already been
observed that TLG will occasionally cause segmentation faults when running a
sufficiently complex transistor configuration. This error could be a result of inefficient
usage of data structures, or a coding error, but is more likely a byproduct of the Maze
Routing algorithm itself which requires a lot of memory to find a sufficiently far
destination node. It is hoped that this version of TLG will be “Beta” tested by
undergraduate students or M.Eng./Ph.D. students to see if it is truly valid, hence the term
“Beta” in the title of the report. Incidentally, the 0.7 in the title arises because even
though TLG is quite complete in its own right, without a proper parser of CAST files, and
other miscellaneous bugs fixed it does not seem like a complete version 1.0.
Additionally, 0.7 volts is a standard voltage drop across the base-emitter junction of a

BIJT :-).

Final Thoughts

This project is definitely a success. Not only have I successfully constructed a complete
program that is capable of automatically generating layout from production rules, I have
learned an incredible amount about automated stack generation, wire routing, and
optimization techniques. Above all I have an even better appreciation for all the time that

was spent laying out the tic-tac-toe microprocessor [5] I helped develop in ECE 474.

For every solution it always seems there are three others that are worth a try. For many
of the design decisions that were made, there are other possible implementations that may
produce better results. However, it is somewhat reassuring to know there are also

undoubtedly many implementations that will produce far worse results :-).
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Judging by the length of this report alone it would seem that I’d be able to “write a book”
about this topic. Even so, it is unfortunately impossible for me to document every single
clever implementation that was used in this project. However, since it is a subject that
interests me so greatly, and the development of TLG has given me an excellent
opportunity to innovate, writing a book about the topic is something I might actually

consider someday.

So in closing, one may ask: does TLG allow for concurrent generation of a complete
microprocessor? Not yet. Unless you find a good way to split a microprocessor up into
t1g files and merge the resulting layouts, this version of TLG can’t quite get you there.
Will it save students and other VLSI layout designers time? Quite possibly. TLG
generates acceptable layout just frequently enough for it to be considered useful. With
improved optimizations, the ironing out of a few bugs, and the addition of some key
features that future versions might bring, TLG may prove to be an invaluable tool for

Cornell ECE students performing VLSI design. At least I sincerely hope it does.
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10. Appendices

Appendix A: TLG Code Summary

// position information
int orgx, orgy, topx, topy;

// definitions
int dh, pw, ppw, mlw, mlmlw, m2w, m2m2w, ndpdh, ndch, ndndch, pdch,
pdpdch, pcw, pch, vliw, vlh, v2w, v2h, minl, minw;

// layout arrays

rect *ndiff, *pdiff, *poly, *ndc, *pdc, *ml, *m2, *pc, *vial, *viaZz,
*psc, *nsc;

label *labels;

// layout array counters

int ndcount, ndccount, nsccount;

int pdcount, pdccount, psccount;

int fcount, polycount, lcount, scount, wcount, mlcount, m2count,
pccount, vlcount, v2count;

int lmlcount, Im2count, lpccount;

// i/o variables
char filename[linesize], outname[linesize];
char line[linesize];

char tlgexit;
char stackposition, stackgen, wirerouting, gaterouting, multilayer,
wellplugs, verbose, quiet;

// stack generation variables
trans *fets;
strans *stacks;

// wire routing variables

wire *wires;

int **metalgrid, ***wiregrid;

char routefound, routecount, lastroutecount;
int routem;

int foundtx, foundty;

cell *routequeue, *routetail;

int neededwires, foundwires;

// rect struct - stores layout rectangles
struct rect {int xbot; int ybot; int xtop; int ytop;};

// label struct - stores layout labels
struct label {char *layer; rect r; int pos; char *name;};

// trans struct - defines transistors and interconnections while
// reading .tlg file. walked and modified during stack generation

struct trans {int 1; int w; char s[labsize]; struct trans *sleft;
struct trans *sright; char d[labsize]; struct trans *dleft;
struct trans *dright; char g[labsize]; struct trans *gleft;
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struct trans *gright; struct rect r; int sout; int dout; int
gout; int color; char type;};

// wire struct - stores wire request information
struct wire {int x; int y; int s; char *name; int color;};

// cell struct - represent new areas of wiregrid to visit
struct cell {int x; int y; int tx; int ty; int m; int tm; int count;
struct cell *next; char dir;};

// strans struct - represent transistor stacks
struct strans {struct trans *t; int color; struct strans *left; struct
strans *right;};

/* getmeat - read input from .tlg, create transistors, and link them
using locate */
void getmeat ()

/* locate - look through existing transistors and link to new one if
node names match */
void locate(trans *fet, char *name, int sdg)

/* printstack - try to find stack heads, use stackwalk to find rest */
void printstack()

/* stackwalk - walk through transistor connections until have to stop
*/

void stackwalk (trans *t, char *name)

/* transfix - remove a transistor and tie the remaining connections
together */
void transfix (struct trans *t)

/* makestack walk over stacks and generate rects for layout arrays

* - add diffusion contacts and labels

* - add substrate plugs if desired

* - identify connections that still need wires
*/

void makestack ()

/* printgrid - dump current contents of layout arrays to metalgrid */
void printgrid()

/* gridfill - £ill a rectangle of metalgrid with a value */
void gridfill (rect r, int wval)

/* routegrid - service wire requests by finding a connetion point and
adding cells to be explored */
void routegrid()

/* routewire - check if new spaces are available and add cell requests,
or the destination has been reached */

char routewire (int sx, int sy, int tx, int ty, int count, char dir, int
m, int tm)

/* routecheck - brute force check if current move is valid according to
metalgrid and wiregrid */
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char routecheck(int x, int y, int tx, int ty, char dir, int m, int mp,
int tm)

/* addcell - allocate memory for a new cell and add it to the route
queue */

void addcell (int x, int y, int tx, int ty, int count, char dir, int m,
int tm)

/* routefill - £fill the desired square of wiregrid with current
distance count */
void routefill (int x, int y, int count, char dir, int m)

/* emptyqueue - service the cell requests by running routewire */
void emptyqueue ()

/* retracewire - trace the wire back to the source following the
distance counters */
char retracewire (int x, int y, int count, char dir, int m)

/* clearroute - clear away everything from wiregrid except the
generated wire */
void clearroute ()

/* travwire - traverse the wire to find successful connections */
void travwire (int x, int y, int dx, int dy, int count, char dir, int m,
int tm)

/* makewire - create wire layout data from rectangles in wiregrid */
void makewire ()

/* makehead - write header to .mag file */
void makehead ()

/* makemeat - output the layout arrays to the .mag file */
void makemeat ()

/* maketail - write footer to .mag file */
void maketail ()

/* makerect - add a layout rectangle to .mag file */
void makerect (rect r, char *s)

/* makelabel - add a layout label to the .mag file */
void makelabel (label 1, char *s)
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Appendix B: TLG File Format Definitions

Definition Description Default Value
dh: min. diffusion height 3
pw: polysilicon width 2

ppw: min. poly-poly distance 3
mlw: metal 1 width 3
mlmlw: metall-metall distance 3
m2w: metal 2 width 3
m2m2w : metal2-metal2 distance 3
ndpdh: n-diffusion to p-diffusion height 12
ndch: n-diffusion contact size 4
ndndch: n-diff to n-diff contact buffer 1
pdch: p-diffusion contact size 4
pdpdch: p-diff to p-diff contact buffer 1
pcw: poly contact size 4
pch: poly contact halo size 4
viw: via 1 size 4
vlih: via | halo size -
v2w: via 2 size 4
v2h: via 2 halo size 3
minl: min. transistor length 2
minw: min. transistor width >

ntransistor >>
ptransistor >>
ndiffusion >>
pdiffusion >>
ndcontact >>
pdcontact >>

psubstratepcontact >>
nsubstratencontact >>

polysilicon >>
polycontact >>
metall >>
m2contact >>
metal2 >>
m3contact >>
metal3 >>
labels >>

Appendix C: MAG File Available Layers
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Appendix D: Sample .wire and .grid Outputs

Sample metalgrid[] [] Output:

threetrans.grid

00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000004444400000000
00000000004444400000000
00000000004444400000000
00000000004444400000000
00000000004444400000000
00000000113333311000000
00000000113333311000000
00000000004444400000000
00000000004444400000000
00000000004444400000000
00000000004444400000000
00000000004444400000000
00000000004444400000000
00000000113333311000000
00000000113333311000000
00000000004444400000000
00000000004444400000000
00000000004444400000000
00000000004444400000000
00000000004444400000000
00000000004444400000000
00000000113333311000000
00000000113333311000000
00000000004444400000000
00000000004444400000000
00000000004444400000000
00000000004444400000000
00000000004444400000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
01234567890123456789012

00000000000000000000000
00000000000000000000000
0O00OOEEE0Q000000000000000
000OEEE0000000000000000
000OEEE0000000000000000
00O0OODDDEEEO000000ODDDO0O
000ODDDEEEO000000DDD0O0O
000ODDDEEEO000000DDD0O0O
0000CCCDDDEEEQODDDCCCO000
000O0CCCDDDEEEQODDDCCCO000
0000CCCDDDEEEODDDCCC000
0000BBBCCCDDDDCCCBBB000
0000BBBCCCDDDDCCCBBB000
0000BBBCCCDDDDCCCBBB0OO0O
0000AAAO0000000000AAAQ0QO
0000AAAQ000000000AAA000
0000AAAOQ000000000AAAD00
00009990000000000999000
00009990000000000999000
00009990000000000999000
00008880000000000888000
00008880000000000888000
00008880000000000888000
00007776665555666777000
00007776665555666777000
00007776665555666777000
00008880000000000888000
00008880000000000888000
00008880000000000888000
00009990000000000999000
00009990000000000999000
00009990000000000999000
0000AAAQ000000000AAAD00
0000AAAO0000000000AAAQQO
0000AAAO0000000000AAAQ0QO
0000BBB00000000O0OOBBB0O0OO
0000BBB0O0O0O00000O0OOBBB0O0OO
0000BBB0O0O0O00000O0OOBBB0O0OO
0000CCCDDDO000ODDDCCCO00
0000CCCDDD0O000ODDDCCCO00
0000CCCDDD0000DDDCCCO00
00000000000000000000000
00000000000000000000000
00000000000000000000000

Sample wiregrid[] [] Output:
threetrans.wire

(note: before the call to retracewire)
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Appendix E: Sample TLG Outputs

TLG File: inv.tlg

| inv.tlg - a simple inverter |
nfet 1:2 w:5 s:GND! g:a d:X
pfet s:vdd! g:a d:X

TLG Command:

$ tlg inv -swgc

MAG Output:
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TLG File: threetrans.tlg

| threetrans.tlg - 3 fets |
nfet s:GND! d:Y# g:c

nfet s:Y# d:X g:b

nfet s:Y# d:X g:a

TLG Command:

$ tlg threetrans -swgc

MAG Output:

GNDf
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TLG File: route.tlg

| nfet stack
nfet w:6 s:Y# d:X g:b

nfet 1:3 s:X d:Y# g:c
nfet s:Y# d:Z# g:a
nfet s:Z# d:X g:d
nfet s:GND! d:A g:a
nfet s:GND! d:A g:b
TLG Command:

$ tlg route -swgc

MAG Output:
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TLG File: stacks.tlg

| nfet stack 1

nfet 1:3 s:GND! d:Y# g:c
nfet w:6 s:Y# d:X g:b
nfet s:Y# d:X g:a

| nfet stack 2

nfet s:GND! d:D# g:xf
nfet s:GND! d:E# g:xe
nfet s:D# d:A# g:xh
nfet s:D# d:A# g:xg
nfet s:E# d:C# g:xc
nfet s:E# d:C# g:xd
nfet s:A# d:C# g:xi
nfet s:C# d:B g:xa
nfet s:C# d:B g:xb

| nfet stack 3
nfet s:G! d:out g:ya
nfet s:G! d:out g:yb
TLG Command:

$ tlg stacks -uc

MAG Output:
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TLG File: 1abl.tlg

ECE 474 - Lab 1
labl.tlg - three inverters

\
\
pfet s:vdd! g:il d:ol

nfet s:GND! g:il1 d:ol

pfet s:vdd! g:o0l d:o2
nfet s:GND! g:0l d:o2

pfet s:vdd! g:02 d:o3
nfet s:GND! g:02 d:o3

TLG Command:

$ tlg labl -uv

TLG Output:

Note: no output file specified, labl.mag assumed

Input file=labl.tlg
Output file=labl.mag

TLG: Generating stacks...

pfet Created! Source=Vdd! Drain=ol Gate=il
nfet Created! Source=GND! Drain=ol Gate=il
pfet Created! Source=vdd! Drain=o02 Gate=ol
nfet Created! Source=GND! Drain=o02 Gate=ol
pfet Created! Source=vVdd! Drain=o03 Gate=02
nfet Created! Source=GND! Drain=o03 Gate=o02
vdd!:3-(i1:2)-0l1:4

GND!:3-(il:2)-0l:4

vdd!:3-(o0l:4)-02:4

GND!:3-(0l:4)-02:4

vdd!:3-(02:4)-03:2

GND!:3-(02:4)-03:2

vdd! (9, 10) needs a wire:0

ol (9, 18) needs a wire:1l
il (7, 15) needs a wire:2

GND!

(26, 10)

ol (26, 18) n
il (24, 15) n

vdd!

(43, 10)

o2 (43, 18) n
ol (41, 15) n

GND!

(60, 10)

o2 (60, 18) n

ol (58, 15) needs a

vdd!

(77, 10)

o3 (77, 18) n
o2 (75, 15) n

GND!

(94, 10)

needs a wire:3

eeds a wire:4
eeds a wire:5

needs a wire:6

eeds a wire:7
eeds a wire:8

needs a wire:9
eeds a wire:10

wire:11

needs a wire:12
eeds a wire:13
eeds a wire:14
needs a wire:15
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03 (94, 18) needs a wire:16
02 (92, 15) needs a wire:17

TLG: Routing wires...

vdd! (9,10) to (43, 10) ROUTE FOUND (28)!
ol (9,18) to (26, 18) ROUTE FOUND (10)!
il (7,15) to (24, 15) ROUTE FOUND (10)!
GND! (26,10) to (60, 10) ROUTE FOUND (34)!
ol (26,18) to (41, 15) ROUTE FOUND (20)!
vdd! (43,10) to (77, 10) ROUTE FOUND (20)!
02 (43,18) to (60, 18) ROUTE FOUND (10)!
ol (41,15) to (58, 15) ROUTE FOUND (10)!
GND! (60,10) to (94, 10)
02 (60,18) to (75, 15) ROUTE FOUND (20)!
o3 (77,18) to (94, 18) ROUTE FOUND (10)!
02 (75,15) to (92, 15) ROUTE FOUND (10)!
GND! (94,10) to (60, 10)

(94,10) to w(60, 10)

(94,10) to w(59, 10)

(94,10) to w(58, 10)

(94,10) to w(57, 10)

(94,10) to w(b6, 10)

(94,10) to w(55, 10)

(94,10) to w(54, 10)

(94,10) to w(53, 10)

(94,10) to w(b2, 10)

(94,10) to w(b1l, 10)

(94,10) to w(50, 10)

(94,10) to w(50, 11)

(94,10) to w(51, 11)

(94,10) to w(b2, 11)

(94,10) to w(b3, 11)

(94,10) to w(54, 11)

(94,10) to w(55, 11)

(94,10) to w(b6, 11)

(94,10) to w(57, 11)

(94,10) to w(b8, 11)

(94,10) to w(59, 11)

(94,10) to w(60, 11)

(94,10) to w(6l, 11)

(94,10) to w(el, 10)

(94,10) to w(el, 12)

(94,10) to w(60, 12)

(94,10) to w(59, 12)

(94,10) to w(58, 12)

(94,10) to w(b57, 12)

(94,10) to w(bo6, 12)

(94,10) to w(55, 12)

(94,10) to w(54, 12)

(94,10) to w(53, 12)

(94,10) to w(b2, 12)

(94,10) to w(b1l, 12)

(94,10) to w(50, 12)

(94,10) to w(50, 12) ROUTE FOUND (31)!
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TLG: labl.mag generated successfully.

MAG Output:
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Appendix F: TLG Operation Guide
TLG Execution
TLG can be executed by issuing following command:
$ tlg filename [-spwgmcuovqg] [position] [outputfile]
The only required parameter into TLG is the input tlg file. It is not necessary to include
the .tlg extension on the command line, but the actual filename must contain the .tlg
extension. From here the following operators can optionally be included in the command

line:

TLG Runtime Parameters

Operator Description
-8 Stack gen. enable
P Stack positioning
W Wire routing enable
-9 Gate routing enable
-m Multilayer routing
-c Well plugging enable
-u “Usual” configuration
-0 Output specification
v Verbose mode
-q Quiet mode

The operators —s, -w, -g, -m, and —c enable transistor stacking, wire routing, gate routing,
multilayer routing, and well plugging, respectively. Additionally enabling the operator —
u has the same effect as using the operators —s, -w, -g, and —m, signifying the “usual”
TLG configuration. Note that if no operators are specified at all the “usual” TLG mode is
assumed.

The operators —v and —q stand for “verbose” mode and ‘“quiet” mode respectively.
Execution in “verbose” mode will output all intermediate procedural information to stdio,
while “quiet” will suppress all messages other than errors. Note further that “quiet” takes
precedence over “verbose” mode.

The operator —p enables stack position preference. Using this flag requires an additional
input position after the operators with a “0” representing in-order stacking, “1”
representing horizontal nfet and pfet grouping, and “2” representing vertical nfet and pfet
grouping. The operator —o enables the output filename to be specified. After using this
flag the desired filename outputfile is required after the operators. Note that for an
input file “file.tlg” the default output is “file.mag” if no output filename is specified.
Note that the order of the additional position and outputfile parameters is dependent
on the order of the —p and —o operators.
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