

 ECE 474 – Fall 2001

 Victor Aprea
 Paul Grzymkowski
 Andre Kozaczka

3T: Innovation in Tic-Tac-Toe ECE 474 – Fall 2001

 2

INTRODUCTION

Unlike many other project-oriented courses at Cornell University, the final project for
ECE 474 – Fall 2001 gave us total liberty in choosing what we wanted to do within the
realm of digital VLSI design. As a group we decided that we wanted to design something
interesting, interactive, familiar and yet innovative. The project that surfaced from these
modest criteria was not a processor, at least not in the conventional sense. The project
was a hardware Tic-Tac-Toe game, fully capable of
interfacing to an LED based game grid and array of push
buttons. The game grid is shown in Figure 1.

The game is designed to be played player vs. computer
opponent. The player uses one of nine pushbuttons to
register a move on the board while observing the LEDs to
determine where the computer has moved. One set of
LEDs represents the player’s pieces, while the other
represents the computer’s. The computer plays games
non-deterministically and can be set to three levels of
difficulty: easy, medium, and hard.

At first glance, the idea admittedly seems somewhat simplistic. After all, five year olds
are capable of understanding the rules of Tic-Tac-Toe. But, in hardware, the game turned
out to be an interesting, non-trivial implementation.

DIGITAL HARDWARE DESCRIPTION

The hardware we designed was extremely unique and special purpose. The types of
hardware we implemented were counters, registers, latches, multiplexors, some
specialized combinational logic, and two PLAs. So in some sense it actually is a
processor, albeit a highly specific, one-hot, 9-bit processor. We designed our circuits in
CAST and simulated them in IRSIM.

Datapath Design

Our datapath was designed with data flowing primarily in one direction, as show in
Figure 2. In general, if the player is moving, desired positions on the board are latched
into one end of datapath as inputs and stored into a register (POS0). If the computer is
moving, desired positions are generated from a randomized or incrementable one-hot
counter (PRONG or INC, respectively), or a corner counter (CCO) and stored in another
register (POS1). This position information is used as an enable into the register file, in
which pieces are written. The status of the board is checked for a win by a combinational
unit (WC), and the board is latched as output once it is the next players’ turn to move.
Additionally, there is a unit that detects if a player occupies opposite corners of the board
(CCH, used by the computer for hard mode). If there is a win or all the board spaces are

Figure 1: Game grid with LEDs

3T: Innovation in Tic-Tac-Toe ECE 474 – Fall 2001

 3

full then a game over signal is output. The individual units of our datapath are described
in the following sections.

Register File

To save the status of the board we used nine special purpose two-bit registers, numbered
zero through eight from the upper left, across rows. Each bit in a register represents the
state of a player in that grid square. The internal state of the register is inverted. If a
player owns a cell, that player’s bit is set low. The allowable states for a register are then
as follows:

• 01 implies that player one occupies the cell
• 10 implies that player two occupies the cell
• 11 implies a cell is not occupied

The state “00” is disallowed by the fact that two players may not occupy the same cell.

The register file takes a total of 13 inputs: a one bit input data wire, four global data
input-output control wires, and nine enable wires. The register file produces 28 outputs:
18 LED outputs, nine data outputs, and one occupied bit. The global control inputs are
read bit-zero (R0), write bit-zero (W0), read bit-one (R1), and write bit-one (W1).
Whenever the read bit-zero signal is asserted, each of the nine registers passes its
respective bit-zero to its data output. This output is in non-inverted form, so output high
implies player one occupies a cell when read bit-zero is asserted.

It should be noted that the read bit-zero and read bit-one signals must be exclusive high.
The reason for this constraint is that there is only one shared output bus, and applying the
constraint allows for simplicity of data control. One can consider the constraint as
multiplexing the output internally in the register file. The convention also makes the
game control flow simple to implement as will be discussed in subsequent sections. The
input data is distributed to each of the nine registers but it is only written to the register
whose enable line is set (based on the position registers) and to the bit whose write line is
set (depending on whose turn it is). The specific reasons for this convention will become
clear in subsequent sections.

Figure 2: Tic-tac-toe datapath. Thin units to the right of labeled functional
blocks represent latches on the outputs of the blocks

3T: Innovation in Tic-Tac-Toe ECE 474 – Fall 2001

 4

The registers contain built in combinational logic based on the internal state. Each
register produces a bit which determines whether a cell is occupied by either player. In
order for the occupied bit to be true a register must have its enable line set. The occupied
bit is relatively easy to produce as it is simply the logical NAND of the two (inverted)
bits in the register, as evidenced by the internal state encodings above. A global occupied
signal is generated by the OR of the nine occupied bits for use by the computer opponent.

The 18 LEDs are driven directly by the internal state of each bit of the register file.
Obviously because of the internal state encodings, the LEDs are intended to be active low
and should be connected through pull-up resistors to Vcc in the off-chip interface. Figure
3 below illustrates the schematic of a single register.

One-Hot Counter (PRONG and INC)
This unique counter is a state machine that generates
a sequence of nine-bit one-hot outputs used to
generate ENABLE signals for the register file. In
essence, this component generates all the powers of
two up to 512 in sequential order. On reset (MRST),
the counter is initialized to 0b000000001, and it then
proceeds to increment through its designated
sequence once per positive clock edge. Upon
reaching the value 0b100000000, the counter returns
to its initial state and continues indefinitely (as long
as the power is on). The device was implemented as
a chain of D-flip-flops as see in Figure 4. Each flip-
flop’s output is connected to the next flip-flop’s input
in the chain. The last flip-flop’s output is connected to
the first flip-flop’s input. The master reset logic is not
shown for simplicity. It entails a single combinational

Figure 3: Tic-tac-toe register high level design schematic. Subscripted signals are
 bit-specific, while non-subscripted are global to the register file.

 Figure 4: One-hot counter schematic

3T: Innovation in Tic-Tac-Toe ECE 474 – Fall 2001

 5

 0 1 2

 3 4 5

 6 7 8

Figure 5: Grid Numbering
Convention

gate with MRST and the D-input signals of each bit; bit-zero being an OR gate and the
rest being AND gates.

The one-hot counter is intended to function in two ways. First, as a stand-alone unit it
operates independently of any control logic aside from the clock. Second, the clock
signal can be replaced by a control signal asserted

Under the clocked mode of operation the unit operates independently of the control logic,
so it provides a pseudo-random index into the grid when the computer opponent begins
considering its options. In order to maintain the “randomness” of this unit’s output we
instantiated two one-hot counters in our design: one clocked with the global clock (reset
when the user hits START) and one precisely controlled. Incidentally, we gave our
clocked unit the acronym PRONG, which stands for Pseudo-Random Obscure Number
Generator, because it is used when the computer is going to make an entirely random
move.

Under the second mode of operation a control signal pulse from the AI control causes the
output of the counter to increment. This mode is used by the computer to systematically
step through the grid to search for possible win or block positions. The reason for this is
described in greater detail in later sections. In each mode of operation the unit is
intended to generate a control signal, namely the enable line, when the computer
opponent is playing. The control logic uses the output of the one-hot counter to access the
register file for writing.

Corner Counter (CCO)

The corner counter is essentially a subset of the one-hot
counter. As if the one-hot counter was not specialized
enough, this unit produces a one hot code sequence that
selects corner cells of the grid. Recall that the grid numbering
convention is zero through eight, starting at the upper-left
corner and incrementing across rows, as illustrated in Figure
5. The corner counter state machine produces the repeating
sequence: 0b100000000, 0b001000000, 0b000000100,
0b000000001. Additionally, given a special control signal
(middle) the unit is able to override this output and assert
0b000010000, which allows the computer to move in the
middle space. These alterations aside, the specifications of
the unit are identical to the clocked one-hot counter in all other regards. Like INC, this
counter is precisely stepped by the AI control. The general purpose of this unit is to
allow the computer opponent to select a corner cell, usually for the first move. Reasons
for this should become clear in later sections.

3T: Innovation in Tic-Tac-Toe ECE 474 – Fall 2001

 6

Latching Scheme

As we have seen there are four ways of accessing the register file:

• Player one can pick a cell with pushbuttons
• The computer can pick a cell with PRONG
• The computer can pick a cell with INC
• The computer can pick a corner (or middle)

with CCO

It will be shown that these three types of computer
selection are sufficient for the computer opponent to
be an impressive adversary. Each option constitutes
a different enable line combination to access to the
register file. Furthermore, each possible one-hot
nine-bit output is generated by an independent
hardware unit that would all like to write to the
same enable lines of the register file. In order to
select among these possible options using a single
enable bus line for each bit, a distributed multiplexer
strategy is necessary.

We use a number of 9-bit read
latches to block the output of each
ENABLE generating unit. The read
latches then drive the nine-bit enable
bus when enabled. These are not
clocked latches, they merely sample
and hold input when enabled. At
any given time only one read latch is
allowed to be enabled by the game
control PLA, and thus we eliminate
the condition of more than one unit
trying to write to the enable bus at a
given time. Figure 6 illustrates the
transistor level implementation of a
read latch bit, while Figure 7
illustrates how the read latches
control bus usage.

A similar 18-bit read latch is used to
latch out the current status of the
register file to the LEDs.

The ENABLE BUS is then fed to position registers POS0, if it is the player’s turn, or
POS1, if it is the computer’s turn. The registers are used to hold onto the current desired

Figure 6: Read latch schematic

Figure 7: Enable bus control schematic

3T: Innovation in Tic-Tac-Toe ECE 474 – Fall 2001

 7

position in the event that the player presses a different button, or the computer’s counters
are still incrementing while the enable signals are being used by the register file.

Win Checker (WC)

The win checker is a basic circuit block that detects if there is a win anywhere on the
game board, and it is comprised of two main parts. The first part of the win checker
detects if there is a three-in-a-row combination for any of the eight possible
combinations. The second part of the win checker takes these eight outputs and OR’s the
result. The inputs to the win checker are read out from the register file. The control
signals r0 and r1 for the register file choose the player’s moves or the AI’s moves to be
read.

STATE MACHINE DESIGN

The main flow of our Tic-Tac-Toe design is controlled by a gamePLA, while the moves
of the computer opponent, the AI, are controlled by another PLA. Both PLAs were
written using PEG and generated as layout for simulation with our datapath in IRSIM.

Game Control

A game control FSM exists to direct the flow of the game and check to see if the human
player has made a valid move (refer to Appendix A for state diagram of game control).
The game control state machine (GCSM) first debounces the start button and then resets
the registers and the game board. Depending on the state of the clock when the push
button is pressed, either the AI or human player goes first. When it’s the player’s move,
the GCSM waits for a ready bit to be set high. The ready bit is the ORed inputs of the
player and indicates that the human player had made a move. The GCSM writes the
player’s move into the pos0 register and then checks to see if the move is valid (i.e. not in
the same spot as any previous moves). If valid, the player’s move is written by asserting
the r_pos0 and w0 signals. The signal r_pos0 controls the read of the pos0 register while
w0 is the write control for the human player’s move in the register file. Next, the GCSM
refreshes the LEDs by latching out the outputs of the register file. If there is a win, the
game ends and the player wins. However, if there is neither a win nor a tie, the GCSM
enables the AI and waits for its move to be ready (like a handshake protocol). Once the
ready bit from the AI is high, the GCSM writes the move by setting r_pos1 and w1 high.

The tie bit is set high when the “tie counter” reaches nine (i.e. nine moves have been
made, all spots on the board should be full). When this occurs, as when there is a win,
the game is over.

3T: Innovation in Tic-Tac-Toe ECE 474 – Fall 2001

 8

AI Strategy

Anyone who has played Tic-Tac-Toe knows a thing or two about how to win at this
simple game. The main goal of any Tic-Tac-Toe strategy is to setup a double win
situation in which case the opponent can only block one win. Being very knowledgeable
in the art of Tic-Tac-Toe strategy, we played some test games against ourselves and
began writing down some of the “unwritten” tactics. Interestingly enough, a flow
diagram began to emerge and we came up with two nearly flawless strategies: one for
when a player has the first move, and a second for when a player has the second move.
The strategies not only try to force double wins, but also pick moves that increase the
chances of winning when there is no double win possible. These strategies became the
basis of our “hard mode” setting.

However, the main challenge was to implement this strategy using a finite state machine.
An obvious solution would simply be making a FSM that knew where every ‘X’ and ‘O’
was on the game board, and then could proceed making the best move possible. This
solution requires many inputs and many states, making the FSM bloated and unpractical.
Our solution, instead, does not need to know the exact location of each move, but rather
knows general information about each move (i.e. corner, side, or middle move). The
FSM we implemented knows if a spot is occupied, the status of each side spot, if there is
a win, and if a corner move is opposite of another previous move.

To make a move, the AI has to its disposal three one-hot counters: one counter stepping
through each spot on the board (INC), one counter stepping through the corner spots
(CCO), and one randomly choosing spots (PRONG). These three counters are
instrumental in keeping the FSM relatively small.

The AI finite state machine can be broken down into three main stages, which follow
from basic tic-tac-toe game play: check for a possible win, check for a possible block,
and then make an appropriate move. For easy mode, the AI simply makes a random
move using PRONG and does not first check for a win or a block. For medium and hard,
however, the first priority is always to check for a possible win-move. To find one, the
AI steps through each board location using INC and if the position is available, it moves
its piece there. If a win is not detected, the AI will simply delete that move and go onto
the next possible move. If a win is detected, the AI leaves its piece in that spot and wins
the game. If no win-move is detected after moving through the entire board, the AI
moves onto the second priority, preventing the opponent from winning. To block a
possible win by the opponent, the AI does the exact same thing as when it is searching for
a win move but this time the AI moves the player’s piece into each unoccupied spot. If a
win is detected (meaning the opponent would win if it went there during its next move),
the AI moves into that spot thereby blocking the possible win. However, if neither a win-
move nor a block-move is possible, the AI must decide where to move its piece. For
medium mode this just means randomly picking a spot with PRONG, but for hard mode
there is another weapon -- the smart move.

3T: Innovation in Tic-Tac-Toe ECE 474 – Fall 2001

 9

Computer Moves First – Hard Mode

As mentioned above, we developed two general strategies for the smart move based on
whether a player moved first or second. Please refer to Appendix B for a flow chart of
this strategy. If the AI moves first, we decided the first move would be a random corner.
Initially, we thought about having the AI always move to
the middle, but that would be boring. Instead, the AI moves
to a random corner, (based on the value in the corner
counter) thereby adding some variability to the game. The
second move of this strategy is based on where the player
moves (corner, side, or middle spot). If the player moves
into one of the sides, we get a situation like in Figure 8.
The best move would to go into the middle, setting up a
double win situation. The player needs to go into the
bottom left corner in order to block the AI’s possible win.
According to the strategy, the next move is in a corner not
next to the player (i.e. a corner that has sides that are not
occupied by the player). From Figure 9, we see that the only corner that meets this
criterion (and is not occupied) is the bottom right corner. This move is the best possible
move because it gives the AI a double win (as indicated by the squares in Figure 9). In
fact, using this strategy after the player moves into any side results in a win every time.
The FSM is able to pick the correct corner by cycling through each corner and checking
the side spots to see if the player occupies them.

So what if the player’s second move is the middle square?
The AI will take the corner opposite of its first move. The
FSM is able to find the opposite corner by stepping through
the corners with CCO, putting its piece in the available
space, and observing if this causes CCH to go high,
indicating if the current corner is opposite a previous move.
If the player’s next move is one of the two free corners, a
double win situation occurs when the AI takes the other free
corner. If the player’s next move is a side, there will be a
tie (see Appendix D for an illustration of these types of
scenarios).

There are two other possible player moves to consider. The player can move in either the
opposite corner the AI went in or a different corner. If the player goes in the corner
opposite the AI, the AI’s next move will be in the middle square, issued by a special
signal to CCO. There will be a double win situation for the AI if the player’s next move
is not in a corner. If the player’s second move is a corner not opposite the AI, the game is
basically over because the AI will take the opposite corner of its previous move and set
up a double win.

Figure 8: Corner-Side-
Middle Combination

Figure 9: Double Win

Situation

3T: Innovation in Tic-Tac-Toe ECE 474 – Fall 2001

 10

Player Moves First – Hard Mode

When the player moves first, we took a more defensive angle when determining what
type of strategy to implement. Please refer to Appendix C for a flow chart of this
strategy. There are three possible first moves to defend against: corner, side, and middle.
If the player moves in the corner, the AI chooses to move in the opposite corner of the
player using CCO and CCH as before, but this time writing the player’s piece to the
board. If the player moves in the side square, the AI moves in the middle and sets a flag
high. The flag will indicate what corner the AI should take for its second move. If the
player moves into the middle, the AI moves in a random corner. The AI’s second move
is any free corner, except if the player’s first move was a side (i.e. flag set high). When
the flag is set high, the AI will only take a corner that is next to the player, preventing a
possible double win for the player (see Appendix E for a sample game). The third move,
if possible, is to move into the middle square. Everything after that is either a win, or a
block, or just filling in remaining spots in the board randomly.

We found this second-move strategy to work fairly well and we initially thought the
strategy was flawless. However, we did find a fault in our strategy and we were able to
beat the AI. Can you figure out how to beat the AI? See Appendix F for the answer!

LAYOUT & SIMULATIONS

We used Magic to layout our design, and LVS and IRSIM to confirm that it worked
correctly according to our specifications.

Layout

For the most part, our layout followed directly from our datapath design, as shown in
Appendix G. For the global game control and the AI state machine we used PLA
generation tools, but for the rest of the blocks we created the layout from scratch. Since
many of our blocks in our datapath were the same on the bit level we were often able to
simply array a unit cell nine times and connect additional wires as necessary. Some
blocks, however (like the win checker) did not lend themselves well to such a technique
and required added attention.

In general we conformed to the standard of having the metal1 layer used for local
connections and run vertically for shared signals, and using metal2 for horizontal
connections. Metal3 was then used sparingly; mostly for large horizontal busses that
many blocks would share (like the ENABLE BUS). The bit-pitch we chose (and made
every effort to conform to) was 100λ which was spacious for some components and quite
restrictive for others. In general, transistors were sized minimally, except where LVS
indicated that outputs required staticizers, and then we painstakingly increased the size of
the required transistors, often disrupting the rest of our layout in the process (as is
typically the case in VLSI, we imagine). In the end our datapath ended up consuming

3T: Innovation in Tic-Tac-Toe ECE 474 – Fall 2001

 11

roughly 1,127 x 2,003 = 2,257,381λ2. The AI PLA, even when minimized rivaled our
datapath at 874 x 1,757 = 1,535,618 λ2, which was considerably larger than our gameplay
control PLA at 650 x 612 = 397,800 λ2.

Given we were working within a 40-pin pad frame it became fairly straightforward what
signals needed to be carried on or off-chip. Our input pins consisted of 21 pins: 2 GND,
2VDD, MRST, START, 2 PHI0, 2 PHI1, DIFF0, DIFF1, and the 9 inputs (IN) from the
push buttons. Our outputs were the remaining 19 pins: GAMEOVER and the 18 outputs
(OUT) to the LEDs. The padframe pinout can be seen along with the package pinout and
some test results in Appendix J. PHI0 and PHI1 were locally inverted using larger
inverters (around 130λ wide). We chose to put the inputs on the left and top of our chip,
keeping all the IN signals together. This left the right side and bottom of our chip for
output which minimized the amount of “crazy wires” we had spanning across our entire
chip. All in all our design fit comfortably in the pad frame (as seen in Appendix H),
taking up about 3,292 x 3,249 = 10,695,708λ2.

Simulation Results

Simulations of our CAST files and layout in IRSIM indicate that our design works
perfectly from within the pad frame. The inputs are received correctly and the outputs
are clearly present and correct. When a game has ended the GAMEOVER value is
properly asserted high. The three difficulty levels behave exactly as expected, and the
computer’s moves seem somewhat random as desired. Easy mode is clearly easy and the
computer often loses. You have to be tricky to beat the computer on medium, but it is
very possible and can happen often once you figure out how the AI works. Beating the
computer on hard is nearly impossible, and from our extensive testing, we found the AI
to never lose when it went first. The AI also took advantage of any mistake we made and
won the game. But when the player goes first in hard mode we have found an
exceptional case in which the computer can be fooled and can lose. This is probably
because the computer’s goal in hard mode isn’t merely to tie (that would be too boring),
but to actively try to defeat the user. It has a small bag of tricks it tries to pull from,
which apparently leaves it slightly vulnerable in one obscure case, which can be
exploited. In a way, this makes our game more interesting, because if you can never win
on hard mode, why bother playing? But if it is possible to win, just very difficult, then it
makes the game more challenging and fun.

Timing is not a particularly relevant issue because our design operates on a human scale
(on the order of 30ms or more). We merely need to clock it in such a way that everything
still works. With this objective, we found that our design was able to simulate correctly
with a step size of 20ns with a PHI1/PHI0 clocking scheme of 0/0, 0/1, 0/0, 1/0.

We initially found that simulating our design from outside the pads did not work, but we
later discovered that if we manipulated the input clocks (inserting additional 0/0 states
into the sequence) we could get it to work from outside the pads as well.

3T: Innovation in Tic-Tac-Toe ECE 474 – Fall 2001

 12

TESTING OUR DESIGN

Our design was fabricated by MOSIS in a .5µm CMOS, 5V process. We received 5
chips back in a standard 40-pin DIP package. A discussion of the testing procedure we
used on our chips and our observations follow.

Test Setup

As mentioned earlier, we designed the chip with the intention of using pushbutton inputs
and LED outputs. For a diagram of the testing setup please refer to Appendix I. The
supply voltage was obtained from an adjustable Tektronix power supply. The LEDs were
active-low by design because they were driven by internally inverted register file values.
They were driven through 1.5 KΩ resistors from the LED pins to Vcc. The exception is
the game-over LED, which is active-high. The pushbuttons were active-high by design.
They were driven low through pull-down resistors when the pushbuttons were open. No
hardware de-bouncing was incorporated into the pushbuttons because our game-control
state machine was intended to enforce a form of software de-bouncing. The LEDs were
laid out in a way that visually reflected an actual game of Tic-Tac-Toe, and pushbuttons
were laid out as intuitively as possible.

We generated the two-phase non-overlapping clock signals using the Atmel AT90S8515
micro-controller, operating at 4 MHz or 8 MHz, and programmed with simple C
programs whose sources can be found in Appendix K. The first, more complicated,
program allowed for user input through MS Windows Hyper-Terminal in order to adjust
the various properties of the clock signals (e.g. pulse-width, non-overlap period, etc.), and
was able to generate clock signals with frequencies on the order of 1KHz. The second,
much simpler, program used assembly code to generate non-overlapping clock signals on
the order of the micro-controller crystal frequency, with parametric adjustments enforced
through the insertion or deletion of no-ops in the code. This version of the clock-
generation produced clocks with frequencies upwards of 1 MHz.

Using a Tektronix digital oscilloscope we were able to probe individual pins to establish
their voltages when the chip is not being clocked (see Appendix J), and find their
voltages at various states of a game. We further used the oscilloscope to establish the
correctness of intended frequency characteristics of the two-phase non-overlapping clock
signals. The most important testing output we had at our disposal, however, was the
LEDs, as they monitored the state of the register file and the state of the game itself.

Testing Parameters

The main parameters that we tweaked extensively were the clock characteristics and the
operating voltage. The first time we inserted a chip into our test setup, it did little more
than heat up. This problem seemed to be a syndrome among chips being tested by other

3T: Innovation in Tic-Tac-Toe ECE 474 – Fall 2001

 13

groups in the lab, and upon extensive examination of the input pads by a team of
professors the suggested solution, that turned out to cure the overheating problem, was to
operate the chips at four volts or lower. As it turned out, our chips performance was
greatly enhanced by lowering the voltage well beyond four volts.

The more volatile parameter was the clocking characteristics. One can consider two-
phase non-overlapping clocks to have the following four parameters associated with
them:

• Phase one pulse-width
• Time between end of phase one and beginning of phase two
• Phase two pulse-width
• Time between end of phase two and beginning of phase one

By painstakingly adjusting these four parameters, varying degrees of functionality were
achieved. As a result of possible on-chip clock skew we found that we needed to
increase the space between the two clock phases (the same phenomenon found during our
simulations from outside the pads). The most interesting observation that we made was
that, counter-intuitively, the slower we ran the clock the less functional our chip became.
Ultimately, that fact proved to be the death of the complicated C-coded clocking scheme,
and the triumph of the simple assembly coded clocking scheme. The reason which came
to surface later was that the automatically generated layout for the PLAs was not
internally staticized, so the slower the clock was the more leakage resulted in the
dynamic nodes of the PLA.

We wondered if there was a problem with driving LEDs straight off the chip, but even
when we detached the LEDs and measured the voltages directly we got the same results.
We also wondered how our pulldown resistors on our inputs were affecting our outputs
so we reduced them all from 1.5kΩ down to 150Ω but found that this made all the output
garbage (similar to our one “bad” chip). Conversely, we increased them to around 10kΩ
with no noticeable improvement in results over our best configuration.

Observations

When we finally settled on a reasonable clocking scheme and operating voltage we found
that our chip could indeed reset itself and startup a new game. However, it would not
permit us to view the first four spaces of the board, and the player was not able to put
their pieces there. The computer clearly could put its pieces in those spaces, though,
because it would win even though there were no visible wins on the board. We thought
we might be dealing with a bad chip but found that four of our five chips behaved this
way (the fifth had bad output all the time and was probably defective). We wondered if
there was a problem with the lower bits of our datapath (specifically with the register file)
until we started messing around with our supply voltage again. When we lowered the
supply voltage from 4V to around 3.25V all of the computer's moves became visible on
the LEDs, and the player could move to additional spaces (but still not all of them). If we

3T: Innovation in Tic-Tac-Toe ECE 474 – Fall 2001

 14

lower the supply too much, of course, then all the LEDs turn on dimly and the output is
impossible to read.

RESULTS AND CONCLUSIONS

Among other things, this project has been a great learning experience for us. We learned
how to design a CMOS “microprocessor” from the transistor-level up. We got a chance
to see our own design fabricated and available for testing, and we got to experience the
(often-harsh) difference between simulation and reality.

If we were to change our design and fabricate our chip again we would do a few things
differently. It is clear to us now that using flip-flops for our counters greatly complicates
the clocking scheme we need to use, and next time we would only use latches and
staticizers. Second, we wouldn’t latch our LED outputs before they go off-chip. For our
purposes we really didn’t need to latch them. We did it solely to make the output prettier,
removing the indeterminate board states. If we could get a direct view into the register
file when we stepped the input slowly we would be able to see its status at all times. This
change would greatly help the debugging process and allow us to see if the computer is
actually writing and removing pieces from the board in the way we had intended.

While disappointed with our initial results (when the chip would not even reset), we were
quite pleased that our game would play, even though not all the spaces were functioning.
The three difficulty levels were all apparent, and the resulting actions of the computer (of
which we could see) were consistent with the AI we had designed for it. Whether the
player or computer would go first appeared to be random (as designed), and the spot the
computer would choose first was also random as to our specifications. When a win is
visible to the user the GAMEOVER light is clearly illuminated, so win checking appears
to be working.

The most recent observations we made when lowering the supply voltage would seem to
indicate there isn't necessarily a defect with our design, but that we still haven't gotten the
test setup right yet. Clearly, the clocking strategy is finicky as a result of using flip-flops
with only one phase of the clock, but it’s not entirely clear if this will prevent our chip
from functioning. Ever optimistic, we believe that if we finally get the supply voltage
and clocking scheme right we may, someday, have a 100% fully functional chip.

3T: Innovation in Tic-Tac-Toe ECE 474 – Fall 2001

 15

APPENDIX

Appendix A: Finite State Machine of Game Control

3T: Innovation in Tic-Tac-Toe ECE 474 – Fall 2001

 16

Appendix B: Flow Chart of Hard AI (going first)

Check for a win
move

Check for a block
move

AI’s turn?
No

Yes

Move Made

Move Counter?

Move to the
middle

Move to a random
corner

0

1

2

Is a side
taken?

Opposite corner of
first move free?

Move to the
middle

No

No

Increment Move
Counter

Move to opposite
corner

Yes

Yes

Take corner NOT
next to opponent

Increment Tie
Counter

Increment Tie
Counter

Note: the Move Counter
does not increment for these

types of moves

3T: Innovation in Tic-Tac-Toe ECE 474 – Fall 2001

 17

Appendix C: Flow Chart of Hard AI (going second)

Check for a win
move

Check for a block
move

AI’s turn?
No

Yes

Move Made

Move Counter?

0 1

Increment Move
Counter

Move to a random
corner

Player’s first
move?

Move to opposite
corner of player

Move to the
middle

Move to a
random corner

Corner
Side

Middle

Set flag
high

Is flag high?

Move to a corner
next to an
opponent

Yes

2

If middle is
available, move

there. If not, pick
random spot

Increment Tie
Counter

Note: the Move Counter
does not increment for these

types of moves

Increment Tie
Counter

3T: Innovation in Tic-Tac-Toe ECE 474 – Fall 2001

 18

Appendix D: Corner – Middle – Corner (AI going first)

DOUBLE WINTIE

AI

Player

3T: Innovation in Tic-Tac-Toe ECE 474 – Fall 2001

 19

Appendix E: Avoiding the Double Win – Player going first

AI

Player

DOUBLE WIN - AI loses TIE - Double win prevented

3T: Innovation in Tic-Tac-Toe ECE 474 – Fall 2001

 20

Appendix F: How to Beat AI – Player must go first

3T: Innovation in Tic-Tac-Toe ECE 474 – Fall 2001

 21

Appendix G: TTTPATH - Datapath Layout

3T: Innovation in Tic-Tac-Toe ECE 474 – Fall 2001

 22

Appendix H: TOP - Padframe Layout

3T: Innovation in Tic-Tac-Toe ECE 474 – Fall 2001

 23

Appendix I: Test Setup

T21REY

7 8 91 2 3 4 5 6

3T: Innovation in Tic-Tac-Toe ECE 474 – Fall 2001

 24

Appendix J: Pinouts and Unclocked Test Results

Pad Package Pin Vfloat
p14 pin 1 OUT04 0.0
p13 pin 2 OUT03 0.0
p12 pin 3 OUT02 0.0
p11 pin 4 OUT01 0.0
p10 pin 5 OUT00 0.0
p9 pin 6 START 2.5
p8 pin 7 VDD 5.0
p7 pin 8 DIFF1 2.5
p6 pin 9 DIFF0 2.5
p5 pin 10 PHI1 2.5
p4 pin 11 PHI1 2.5
p3 pin 12 PHI0 2.5
p2 pin 13 PHI0 2.5
p1 pin 14 GND 0.0
p0 pin 15 MRST 2.5

p39 pin 16 IN8 2.5
p38 pin 17 IN7 2.5
p37 pin 18 IN6 2.5
p36 pin 19 IN5 2.5
p35 pin 20 IN4 2.5
p34 pin 21 IN3 2.5
p33 pin 22 IN2 2.5
p32 pin 23 IN1 2.5
p31 pin 24 IN0 2.5
p30 pin 25 VDD 5.0
p29 pin 26 OUT17 0.0
p28 pin 27 OUT16 0.0
p27 pin 28 OUT15 0.0
p26 pin 29 OUT14 0.0
p25 pin 30 OUT13 0.0
p24 pin 31 OUT12 0.0
p23 pin 32 OUT11 0.0
p22 pin 33 OUT10 0.0
p21 pin 34 OUT09 0.0
p20 pin 35 GOVER 0.0
p19 pin 36 GND 0.0
p18 pin 37 OUT08 0.0
p17 pin 38 OUT07 0.0
p16 pin 39 OUT06 0.0
p15 pin 40 OUT05 0.0

3T: Innovation in Tic-Tac-Toe ECE 474 – Fall 2001

 25

Appendix K: 8515 2 Phase Clock Generation Source Code

/*
/ Generates 2 phase non-overlapping clocks based on 4 events
/ Event1 corresponds to the duration of silence between end
/ of phase2 and beginning of phase1
/ Event2 is the duration of the first phase (edge to edge)
/ Event 3 is the silence between end of phase one and start of phase2
/ Event 4 is the duration of the second phase (edge to edge)
/
/ The user interface uses Hyperterminal
/ When prompted for a command the following options are valid
/ a, b, c, or d followed by an integer
/ the letter designates which event you wish to modify
/ a is event1, b is event2, etc...
/ the integer corresponds to the new time for the given event
/ all times are relative to the beginning of the 2-phase period
/ you can also type e to see the current time values of
/ the four events in hyperterminal
*/

#include <90s8515.h>
#include <stdio.h>
#include <stdlib.h>

#define t1 1
#define t2 250
#define t3 1500

#define increment 5
#define begin {
#define end }

void task1(void);
void task2(void);
void gets_int(void);
void initialize(void);

//RXC ISR variables
unsigned char r_busy; //recieve ISR is running
unsigned char r_index; //current string index
unsigned char r_buffer[16]; //input string
unsigned char r_ready; //flag for receive done
unsigned char r_char; //current character

unsigned char reload, pulse;
int time1, time2, time3;
int event1, event2, event3, event4;

interrupt [TIM0_OVF] void timer0_overflow(void)
begin
 //reload to force 1 mSec overflow
 TCNT0=reload;

 //Decrement the three times if they are not already zero
 if (time1>0) --time1;
 if (time2>0) --time2;
 if (time3>0) --time3;
end

interrupt [UART_RXC] void uart_rec(void)
begin
 r_char=UDR; //get a char
 UDR=r_char; //then print it

 //build the input string
 if (r_char != ’\r’) r_buffer[r_index++]=r_char;
 else
 begin
 putchar(’\n’); //use putchar to aoid overwrite

3T: Innovation in Tic-Tac-Toe ECE 474 – Fall 2001

 26

 r_buffer[r_index]=0x00; //zero terminate
 r_busy=0; //and clean up
 r_ready=1; //signal cmd processor
 UCR.7=0; //stop rec ISR
 end
end

void main(void)
begin
 initialize();

 //main task scheduler loop
 while(1)
 begin
 if (time1==0) task1();
 if (time2==0) task2();
 end
end

void task1(void)
begin
 time1 = t1;
 //phase one goes high @event1 ms
 if(pulse==event1)begin
 PORTC = 1;
 pulse++;
 end
 //phase 1 goes low at event2 ms
 else if (pulse == event2)begin
 PORTC = 0;
 pulse++;
 end
 //phase 2 goes high at event3 ms
 else if (pulse == event3)begin
 PORTA = 1;
 pulse++;
 end
 //phase 2 goes low at event4 ms
 else if (pulse == event4)begin
 PORTA = 0;
 pulse = 1;
 end
 //always increment the phase counter
 else pulse++;

PORTB=~pulse;
end

void task2(void)
begin
 int num;
 time2 = t2;

 //change the rising edge of phase 1
 if(PIND == ~0x04 && event1<(event2-increment))
 event1+=increment;
 if(PIND == ~0x08 && event1 > increment)
 event1-=increment;

 //change the falling edge of phase 1
 if(PIND == ~0x01 && event2 < (event3-increment))
 event2+=increment;
 else if(PIND == ~0x02 && event2 > (event1+increment))
 event2-=increment;

 //change the rising edge of phase 2
 if(PIND == ~0x80 && event3 < (event4-increment))
 event3+=increment;
 else if(PIND == ~0x40 && event3 > (event2+increment))
 event3-=increment;

 //change the falling edge of phase 2

3T: Innovation in Tic-Tac-Toe ECE 474 – Fall 2001

 27

 if(PIND == ~0x10)
 event4+=increment;
 else if(PIND == ~0x20 && event4>(event3+increment))
 event4-=increment;

 if(r_ready)
 begin
 num = atoi(&r_buffer[1]);
 //printf("\nInput = %d\n\rType=%c\n\r", num,r_buffer[0]);
 switch (r_buffer[0])
 begin
 case ’a’: if(num > 0 && num < event2) event1 = num;
 else putsf("Input Out of Bounds\n\r");
 break;
 case ’b’: if(num > event1 && num < event3) event2 = num;
 else putsf("Input Out of Bounds\n\r");
 break;
 case ’c’: if(num > event2 && num < event4) event3 = num;
 else putsf("Input Out of Bounds\n\r");
 break;
 case ’d’: if(num > event3) event4 = num;
 else putsf("Input Out of Bounds\n\r");
 break;

case ’e’:
printf("event1=%d\n\revent2=%d\n\revent3=%d\n\revent4=%d\n\n\r",eve

nt1,event2,event3,event4);
 break;
 default: printf("bad command line argument\n\r");
 end
 gets_int();
 end
end

void gets_int(void)
begin
 r_busy=1;
 r_ready=0;
 r_index=0;
 UCR.7=1;
 printf("Enter Command: ");
end

void initialize(void)
begin
 DDRC=0xff;
 DDRA=0xff;
 DDRB=0xff;
 DDRD=0x00;

 PORTB = 0xff;
 PORTA = 0;
 PORTC = 0;

 //3.69 MHz
 //UCR=0x18;
 //UBRR=0x17;

 //8 MHz
 //UBRR=51;
 //UCR=0x18;

 //4 MHz
 UBRR=25;
 UCR=0x18;

 putsf("INITIALIZED\n\r");
 //set up timer 0
 reload=256-62; //value for 1 Msec
 TCNT0=reload;
 TIMSK=2; //turn on timer 0 overflow ISR
 TCCR0=3; //prescalar to 64

3T: Innovation in Tic-Tac-Toe ECE 474 – Fall 2001

 28

 time1=t1;
 time2=t2;

 event1 = 20;
 event2 = 30;
 event3 = 50;
 event4 = 60;

 pulse = 1;
 gets_int();

 //crank up the ISRs
 #asm
 sei
 #endasm
end

// 2-phase non-overlapping clock generator using embedded assembly

#include <90s8515.h>

void main(void){

DDRC=0xff;
 DDRA=0xff;
 PORTC=0;
 PORTA=0;

 #asm
 .equ PORTC = 0x15
 .equ PORTA = 0x1b
 clr R16
 set R17
 #endasm

 #asm
 loop:
 nop
 out PORTA, R17 // phi0 on
 nop
 out PORTA, R16 // phi0 off
 nop
 nop
 nop
 out PORTC, R17 // phi1 on
 nop
 out PORTC, R16 // phi1 off
 rjmp loop
 #endasm
}

